mercoledì 2 dicembre 2009

High speed photography

High speed photography is the science of taking pictures of very fast phenomena. In 1948, the Society of Motion Picture and Television Engineers (SMPTE) defined high-speed photography as any set of photographs captured by a camera capable of 128 frames per second or greater, and of at least three consecutive frames. High speed photography can be considered to be the opposite of time-lapse photography.

In common usage, high speed photography may refer to either or both of the following meanings. The first is that the photograph itself may be taken in a way as to appear to freeze the motion, especially to reduce motion blur. The second is that a series of photographs may be taken at a high sampling frequency or frame rate. The first requires a sensor with good sensitivity and either a very good shuttering system or a very fast strobe light. The second requires some means of capturing successive frames, either with a mechanical device or by moving data off electronic sensors very quickly.

Other considerations for high-speed photographers are record length, reciprocity breakdown, and spatial resolution

High speed motion pictures started in 1916 by German weapons scientists [7] .

Methods developed using stationary medium with frames in turn activated by a rotating mirror to rotating prism cameras using fast moving film [8] .

As film and mechanical transports improved, the high-speed film camera became available for scientific research. Kodak eventually shifted its film from acetate base to Estar (Kodak's name for a Mylar-equivalent plastic), which enhanced the strength and allowed it to be pulled faster. The Estar was also more stable than acetate allowing more accurate measurement, and it was not as prone to fire.

Each film type is available in many load sizes. These may be cut down and placed in magazines for easier loading. A 1,200-foot (370 m) magazine is typically the longest available for the 35 mm and 70 mm cameras. A 400-foot (120 m) magazine is typical for 16 mm cameras, though 1,000-foot (300 m) magazines are available. Typically rotary prism cameras use 100ft (30m) film loads. The images on 35 mm high-speed film are typically rectangular with the long side between the sprocket holes instead of parallel to the edges as in standard photography. 16 mm and 70 mm images are typically square rather than rectangular. A list of ANSI formats and sizes is available[9][10].

Most cameras use pulsed timing marks along the edge of the film (either inside or outside of the film perforations) produced by sparks or later by LEDs. These allow accurate measurement of the film speed and in the case of streak or smear images, velocity measurement of the subject. These pulses are usually cycled at 10, 100, 1000 Hz depending on the speed setting of the camera.

For the development of explosives the image of a line of sample was projected onto an arc of film via a rotating mirror. The advance of flame appeared as an oblique image on the film, from which the velocity of detonation was measured [12] .

By removing the prism from the rotary prism cameras and using a very narrow slit in place of the shutter, it is possible to take images whose exposure is proportional to the film speed across the slit. The image that results has several useful properties. The film advance direction is essentially a measure of time. If the subject's motion is perpendicular to the slit, it may show growth or motion perpendicular to the slit.

Motion compensation photography (also known as Ballistic Syncro Photography or Smear Photography when used to image high speed projectiles) is a form of streak photography. When the motion of the film is opposite to that of the subject with an inverting (positive) lens, and synchronized appropriately, the images show events as a function of time. Objects remaining motionless show up as streaks. This is the technique used for finish line photographs. At no time is it possible to take a still photograph that duplicates the results of a finish line photograph taken with this method. A still is a photograph in time, a streak/smear photograph is a photograph of time. When used to image high speed projectiles the use of a slit (as in Streak Photography) produce very short exposure times ensuring higher image resolution. The use for high speed projectiles means that one still image is normally produced on one roll of cine film. From this image information such as yaw or pitch can be determined. Because of its measurement of time variations in velocity will also be shown by lateral distortions of the image.

By combining this technique with a diffracted wavefront of light, as by a knife-edge, it is possible to take photographs of phase perturbations within a homogeneous medium. For example, it is possible to capture shockwaves of bullets and other high-speed objects. See, for example, Shadowgraph and Schlieren photography.
[edit] Video

Nessun commento:

Posta un commento